Insights into the Fallback Path of Best-Effort Hardware Transactional Memory Systems

نویسندگان

  • Ricardo Quislant
  • Eladio Gutiérrez
  • Emilio L. Zapata
  • Oscar G. Plata
چکیده

Current industry proposals for Hardware Transactional Memory (HTM) focus on best-effort solutions (BE-HTM) where hardware limits are imposed on transactions. These designs may show a significant performance degradation due to high contention scenarios and different hardware and operating system limitations that abort transactions, e.g. cache overflows, hardware and software exceptions, etc. To deal with these events and to ensure forward progress, BE-HTM systems usually provide a software fallback path to execute a lock-based version of the code. In this paper, we propose a hardware implementation of an irrevocability mechanism as an alternative to the software fallback path to gain insight into the hardware improvements that could enhance the execution of such a fallback. Our mechanism anticipates the abort that causes the transaction serialization, and stalls other transactions in the system so that transactional work loss is minimized. In addition, we evaluate the main software fallback path approaches and propose the use of ticket locks that hold precise information of the number of transactions waiting to enter the fallback. Thus, the separation of transactional and fallback execution can be achieved in a precise manner. The evaluation is carried out using the Simics/GEMS simulator and the complete range of STAMP transactional suite benchmarks. We obtain significant performance benefits of around twice the speedup and an abort reduction of 50% over the software fallback path for a number of benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Single Global Lock Fallback for Best-effort Hardware Transactional Memory

Intel’s Haswell and IBM’s Blue Gene/Q and System Z are the first commercially available systems to include hardware transactional memory (HTM). However, they are all best-effort, meaning that every hardware transaction must have an alternative software fallback path that guarantees forward progress. The simplest and most widely used software fallback is a single global lock (SGL), in which abor...

متن کامل

Study of hardware transactional memory characteristics and serialization policies on Haswell

This paper presents an extensive performance study of the implementation of Hardware Transactional Memory (HTM) in the Haswell generation of Intel x86 core processors. It evaluates the strengths and weaknesses of this new architecture by exploring several dimensions in the space of Transactional Memory (TM) application characteristics using the Eigenbench (Hong et al., 2010 [1]) and the CLOMP-T...

متن کامل

A Template for Implementing Fast Lock-free Trees Using HTM

Algorithms that use hardware transactional memory (HTM) must provide a software-only fallback path to guarantee progress. The design of the fallback path can have a profound impact on performance. If the fallback path is allowed to run concurrently with hardware transactions, then hardware transactions must be instrumented, adding significant overhead. Otherwise, hardware transactions must wait...

متن کامل

Reduced Hardware Lock Elision

Hardware lock elision (HLE) concurrently executes lock critical sections as hardware transactions, but fallbacks to the original sequential lock fallback path when some hardware transaction fails. Recent software-assisted lock-removal based schemes provide a better concurrency by sacrificing safety (opacity). Hardware transactions can execute at the same time with the lock fallback path as long...

متن کامل

Reduced hardware transactions: a new approach to hybrid transactional memory Citation

For many years, the accepted wisdom has been that the key to adoption of best-effort hardware transactions is to guarantee progress by combining them with an all software slow-path, to be taken if the hardware transactions fail repeatedly. However, all known generally applicable hybrid transactional memory solutions suffer from a major drawback: the coordination with the software slow-path intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016